3,396 research outputs found

    Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design

    Get PDF
    Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid. By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification

    Smooth supersaturated models

    Get PDF

    Benchmarking 2D hydraulic models for urban flood simulations

    Get PDF
    This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally

    Could Eggs Help Increase Dietary Protein Intake in Older Adults? - Exploring Reasons for the Consumption and Non-Consumption of Eggs in People over 55 years old.

    Get PDF
    Compared to other protein-rich foods, eggs are of soft texture, easy to cook, and low cost, and may be useful in increasing protein intakes in older adults. Focus groups and interviews were used to explore all reasons for consuming and not consuming eggs in older adults. Forty-two individuals (20 males, 22 females, aged 56-96 years) took part in one of eight focus groups or two individual interviews. Thematic analyses revealed 69 different reasons for eating or not eating eggs in this population. Reasons were related to: hedonics, properties of the food, preparation style, convenience, physical environment, variety, physical health/abilities, nutrition and health knowledge, food safety, social environment, morality, emotion, and habit. Some of these reasons are likely to be specific to egg consumption in older adults, e.g. properties of the food and convenience combined with physical health/abilities. Some reasons are also likely to be more relevant to older than younger individuals, e.g. medical factors. Investigation of the reasons most related to intake on a population-wide scale would aid the development of interventions

    Non-dimensional Newton-Puiseux Expansions

    Get PDF
    Recent results in the theory and application of Newton-Puiseux expansions, i.e. fractional power series solutions of equations, suggest further developments within a more abstract algebraic-geometric framework, involving in particular the theory of toric varieties and ideals. Here, we present a number of such developments, especially in relation to the equations of van der Pol, Riccati, and Schrödinger. Some pure mathematical concepts we are led to are Graver, Gröbner, lattice and circuit bases, combinatorial geometry and differential algebra, and algebraic-differential equations. Two techniques are coordinated: classical dimensional analysis (DA) in applied mathematics and science, and a polynomial and differential-polynomial formulation of asymptotic expansions, referred to here as Newton-Puiseux (NP) expansions. The latter leads to power series with rational exponents, which depend on the choice of the dominant part of the equations, often referred to as the method of "dominant balance". The paper shows, using a new approach to DA based on toric ideals, how dimensionally homogeneous equations may best be non-dimensionalised, and then, with examples involving differential equations, uses recent work on NP expansions to show how non-dimensional parameters affect the results. Our approach finds a natural home within computational algebraic geometry, i.e. at the interface of abstract and algorithmic mathematics
    corecore